The aim of this research is to identify the structural patterns of root morphemes of Lithuanian inflective words and to establish their productivity and frequency. First, with reference to the earlier work conducted by Lithuanian linguists, we discuss the structural diversity of root morphemes and determine the productivity of structural patterns (the number of different roots of a specific pattern). Then we analyse data from real usage. For this stage, the database of the morphemics of the Lithuanian language (Lietuvių kalbos morfemikos duomenų bazė) was used. 265 thousand usage instances of inflective words constitute the research data.

The analysis of the root structure allows drawing the following conclusions: 1) although the diversity of morpheme structure is rich, only roots of simple structure are productive and frequent (roots whose onsets or codas contain one to two consonants), 2) root morphemes are non-syllabic or vary from monosyllabic to trisyllabic (non-syllabic roots are the most productive and the most frequent), 3) consonant clusters are not frequent in the middle of a morpheme (they were identified in a third of all roots), 4) the number of consonants in a root usually does not exceed six, 5) onset consonant clusters concur with the pattern of a syllable beginning; consonant clusters in codas and medial clusters are more diverse.

KEYWORDS: morpheme, root, vowel, consonant, inflective part of speech.

Linguists have been interested in morpheme structure for a long time. Their interest was induced by the article by Trubetzkoy (1931), who set tasks of morphonology, including the study of the phonological structure of morphemes. The other stimulus came from Jakobson’s (1962) idea that different grammatical classes can be characterized by different usage of phonemes.

The aim of the research presented here is to identify the main structural patterns of root morphemes of Lithuanian inflective words (nouns, adjectives, pronouns, numerals and verbs), their productivity and frequency. The research of such kind was motivated by the experience of working with abundant usage and dictionary data, which has repeatedly shown that usage can disclose interesting cases resistant to any prejudice.
The root structure of verbs provided in dictionaries has been analysed in works of Kruopienė (2000); Kaukienė (1994, 2002) has studied the morphonological structure of verb roots; Akelaitienė (1996, 2000) has been interested in vowel change for many years; the structure of nominal words has been analysed by Karosiene (2004). The aforementioned researchers analyse dictionary but not usage data. Therefore, based on such data we can say which patterns of morphemic structure or sound change are possible in the Lithuanian language; we can also indicate the productivity of a particular pattern; however, we cannot say anything about their frequency. In this article, productivity is perceived as realization of a pattern which can be calculated based on dictionaries. Frequency shows usage instances in real connected speech.

The research and results will be presented in the following stages: first, we provide a survey of the results of research conducted by Lithuanian linguists. Then we analyse and discuss the results of real usage (the frequency of structural patterns is identified). The frequency data for the study was collected from the database of the morphemics of the Lithuanian language (Lietuvių kalbos morfemikos duomenų bazė, further in the text DbML), which was created at Vytautas Magnus University and served as the basis for morphemics dictionaries (see Rimkutė, Kazlauskienė, Raškinis 2011). The database contains approximately 72 thousand words from different text styles and various topics. For the extraction of the empirical data, a special computer programme was created. The programme works in several stages: 1) a list (dictionary) of different word forms used in the research material was generated and usage number (frequency) of each word form was identified; 2) words were automatically stressed (in Lithuanian the stress is free) and transcribed with tools available to us (for the latter, see Kazlauskienė, Raškinis, Vaičiūnas 2010), mistakes were corrected manually; 3) morpheme boundaries in all words were marked by conventional symbols manually; 4) words were replaced by conventional symbols: C - for consonants, V - for vowels, W - for diphthongs ai, au, ei, ui [eɪ, eʊ, ɛi]; 5) the received word code CVCW... was segmented into morphemes according to the labels used in words to mark morpheme boundaries; 6) morphemes matching the same code were grouped and their usage frequency in the research data was calculated. The research data from DbML encompasses 174,200 nominal words (103,681 nouns, 23,714 adjectives, 41,139 pronouns, and 5,666 numerals) and 90,800 verbs.

Non-inflective words have been left outside the scope of the study because quite a large part thereof are primary (only a root morpheme, e.g., ir ‘and’, ar ‘whether’, o ‘and/while’, ne ‘no’); moreover, some of them are grammatical forms of multiword expressions (e.g., iš tiesų ‘truly’, cf. N Pl Gen). Proper nouns were not analysed either, because their morphemic segmentation is complicated.

International words have not been analysed either, as they usually came to the language as morphemically unsegmented words showing structural regularities of other languages rather than those of Lithuanian. However, the old borrowings, e.g., stiklas ‘glass’, agurkas ‘a cucumber’, have been included into our research as they have adapted in the language, adjusted to the system of the Lithuanian language, and most Lithuanians do not identify them as borrowings.

1 The author of the programme is prof. dr. Gailius Raškinis. We are thankful for his help during the extraction of the empirical data.

2 There are 11 vowels in the Lithuanian language: long [æː], [eː], [iː], [oː], [uː], [ɔː] and short [æ, e, i, o, u]. Consonants, depending on their position in a consonant cluster and articulation which is the focus of attention in the analysis of structural types of morphemes, are classified into three groups: T group (plosive consonants [b, d, g, k, p, t, ŋ, ʒ, ź, ʒ̃, ʒ̃ʲ], and affricates [bʲ, dʲ, gʲ, ʐ, ʑ, z̃, z̃ʲ]), S (fricative consonants [s, z, ʃ, ʒ, ʃ͡z̃, z̃] and lateral approximants [l, ʎ]), and R (nasals [m, n, nʲ, n̄, n̄ʲ, n̄̃, n̄̃ʲ], vibrations [r, ɾ], approximants [l, ɾ], and lateral approximants [l̄, ɾ̄]). The Lithuanian language has diphthongs which form the nucleus of a syllable: [eɪ, oʊ, ɛi, ɔi] (see more about the phonological system of the Lithuanian language in Girdenis 2014).
In inflectional languages like Lithuanian, the boundary between synchrony and diachrony is not always clear. Quite often fusion occurs, i.e., morphemes merge; for this reason, affixes are often considered as part of a root. For example, from the modern language perspective, *gyv-* can be considered as the root of the adjective *gyvas* ‘alive’, although historically, this adjective should be linked to the verb *gytī* ‘to recover’. In this case, the morphemic division is between the root *gy*-, the suffix *-v-* and the flexion *-as*. The other example is the adjective *kuklus* ‘modest’ that is historically related to *kukti* ‘to bow’; however, the adjective has digressed from its underlying word considerably in respect of its meaning. During the preparation of the data for the research, we tried to follow the synchronic principle. If the link of a word to a possible underlying word has faded, such a word was treated as an underlying word. For this reason, *gyvas* was divided into *gy-v-as*, while *kuklus* into *kukl-us*.

Consonants tend to react actively to neighbouring sounds (assimilation, degemination, alternation, elimination of a consonant may occur); as a result, it is not always simple to recognise and to identify exact morpheme boundaries nor to name specific processes of consonant harmonisation (for more see Kazlauskienė and Cvilikaitė 2015). The future tense suffix *-s-* could be mentioned as an example: *bėg-s* ‘he will run’, *bėg-s-iu* ‘I will run’. When a root ends on *s*, morphemes overlap and the remaining single consonant belongs to both morphemes, e.g., *ves+s=ves* ‘he will marry’, *vesiu* ‘I will marry’.

This article employs the following terms: an **onset** is the initial consonant group of a morpheme, a **coda** is the final consonant group, and a **medial cluster** is a consonant group located between vowels in the middle of a morpheme. A **pattern** is considered to be a CV structure unit (with indicated quantity of consonants and a vowel or a diphthong) and a **type** is RTV (with an indicated consonant group according to the articulation thereof).

The Pattern Structure of Nominal Word Roots

Lithuanian words and syllables can start and end on a vowel or a consonant (up to three consonants) (Girdenis & Karosienė, 2010, pp. 81–106; Kazlauskienė & Raškinis, 2008b, p. 26). There may be from 1 to 4 intervocalic consonants (Girdenis, 2014, pp. 130–132, Kazlauskienė & Raškinis, 2008a). A hiatus (a juncture of two vowels) in words of Lithuanian origin and old borrowings is only possible between morphemes; it is not possible between all morphemes, but only between a prefix and a root (e.g., *pa-akys* ‘under eye’) and in compounds, when a connecting vowel is added, e.g., *ilga-uodegė* ‘long-tailed’. Based on structural regularities of other language units, the theoretic structure of a monosyllabic root could be as follows: $C_0.\overline{3}V(W)C_{0.5};$ the structure of a disyllabic root would be $C_{0.3}V(W)C_{1.4}V(W)C_{0.3};$ trisyllabic - $C_{0.3}V(W)C_{1.4}V(W)C_{1.4}V(W)C_{1.4};$ etc. However, such theoretic possibilities are not always materialized; furthermore, instances unforeseen in theoretic constructs also emerge.

The root structure of Lithuanian primary nominal words was extensively described by Karosiienė (2004). The results of her research served as the basis to establish the inventory of structural patterns of nominal words. According to the research results of Karosiienė, the roots of primary Lithuanian nominal words can be non-syllabic (there are only 10 roots), monosyllabic (78%), disyllabic (21%) and trisyllabic (15 roots). There may be no initial consonant group, while the final group, according to the research by Karosiienė, is essential, and the total consonant amount in roots does not exceed 6. Thus the consonant number

3 The generalised formula should be read as follows: there may or may not be up to three consonants in an onset, the root centre can contain a vowel or a diphthong, there may or may not be up to three consonants in a coda.

4 The main source of Karosiienė is the second edition of The Dictionary of Modern Lithuanian (further in the text DML); some details were specified with reference to the third edition (Karosiene, 2004, p. 16).
provided in the formulas above is the maximum; however, it correlates with other root consonant clusters: if the onset has 3 consonants, the maximum number of consonants in the coda of monosyllabic roots can be 3, while in disyllabic roots respectively the sum of consonants of a medial cluster and a coda will not exceed 3. On the grounds of the research results of Karosienė, the theoretic formulas for root structure have to be revised considerably: C_{0-3}V(W)C_{1-4} (Karosienė, 2004, p. 22), C_{0-3}V(W)C_{1-4}V(W)C_{1-4}, for trisyllabic roots C_{0-1}VC_{1-2}C_{1-2}VC_{1-2}C_{1-2}V(W)C_{1-4} (Karosienė, 2004, p. 73).

Based on the possible number of consonants, there can be 15 theoretic patterns of monosyllabic roots and 30 patterns of disyllabic roots. The research conducted by Karosienė revealed 46 realized patterns. All monosyllabic patterns are realized; while 8 patterns are not among the disyllabic realized ones (they are patterns with 5–6 consonants: VC_{1}VC_{4}, VC_{2}VC_{3.4}, VC_{3}VC_{2.3}, VC_{4}VC_{2}, C_{3}VC_{1}, C_{1}VC_{0}V(W)C_{1}; only 5 patterns of trisyllabic roots are realized.

The structural patterns of roots of primary nouns and adjectives\footnote{Based on the data of roots provided in the study by Karosienė (2004), this list contains root quantity and examples of a particular structural pattern. Lithuanian linguists tend to provide both, masculine and feminine forms, e.g., geras, -a ‘good’, for headwords of gender inflective words (e.g., adjectives, some pronouns). In this paper, for the sake of simplicity only the masculine gender will be provided.} are as follows:

V(W)C_{1} – 41 (e.g., akis ‘an eye’, ūmus ‘flash’);
V(W)C_{2} – 35 (e.g., eglė ‘a fir tree’, aiškus ‘clear’);
V(W)C_{3} – 14 (e.g., ūkšmė ‘a shade’, aštrus ‘sharp’);
VC_{4} – 6 (e.g., ašksnis ‘an elder’, ankštas ‘tight’);
C_{1}V(W)C_{1} – 489 (e.g., bitė ‘a bee’, mažas ‘small’);
C_{1}V(W)C_{2} – 320 (e.g., gervė ‘a crane’, gardus ‘tasty’);
C_{1}V(W)C_{3} – 80 (e.g., vabzdės ‘an insect’, karštas ‘hot’);
C_{2}V(W)C_{1} – 192 (e.g., knyga ‘a book’, storas ‘fat’);
C_{2}V(W)C_{2} – 105 (e.g., kraštas ‘an edge’, brangus ‘expensive’);
C_{2}V(W)C_{3} – 30 (e.g., žvirblis ‘a sparrow’, grakštus ‘graceful’);
C_{3}V(W)C_{4} – 5 (e.g., slenkstis ‘threshold’);
C_{3}VC_{1} – 12 (e.g., strélė ‘an arrow’, stropus ‘studious’);
C_{3}V(W)C_{2} – 14 (e.g., skruzde ‘an ant’);
C_{3}VC_{3} – 1 (e.g., straipsnis ‘an article’);
V(W)C_{1}VC_{2} – 36 (e.g., erelis ‘an eagle’, atidus ‘attentive’);
VC_{1}VC_{2} – 2 (e.g., agurkas ‘a cucumber’);
VC_{1}VC_{3} – 1 (e.g., ielakštis ‘a part of a plough’);
V(W)C_{1}VC_{4} – 18 (e.g., elgeta ‘a beggar’);
VC_{2}VC_{3} – 1 (e.g., agrastas ‘a gooseberry’);
VC_{2}VC_{4} – 3 (e.g., ašktas ‘an urge’);
VC_{3}VC_{4} – 1 (e.g., inkštiras ‘a blackhead’);
C_{1}V(W)C_{1}VC_{2} – 179 (e.g., dešinė ‘right’, malonus ‘pleasant’);
C_{1}VC_{3}VC_{2} – 22 (e.g., balandis ‘a dove’);
C_{1}VC_{4}V(W)C_{2} – 2 (e.g., zeberklos ‘a spear’).
Patterns C1V(W)C1, C1VC1 and C2V(W)C1 are the most productive, as they make up more than a half of all roots of primary nominal words (55%). Thus, we can expect that these particular patterns will dominate in real connected speech.

What determines productivity of a pattern? First, attention should be paid to the quantity of consonants in a pattern: 3% of primary nominal words have 1 consonant, 36% contain 2 consonants, 37% have 3 consonants, 18% have 4 consonants, 5% have 5 consonants, and 1% has 6 consonants. It is obvious that the prevailing patterns are those whose total amount of consonants is between 2 and 3. Such are three most productive patterns mentioned above. However, the total amount of consonants is not the only factor influencing the productivity of a pattern. For example, the productivity of patterns C1V(W)C2 and V(W)C3, both of which have three consonants, differs: respectively 14% and 1% of primary nominal words; the productivity of patterns C1V(W)C2 and C1V(W)C3 with four consonants is 7% and 4%. A more thorough analysis of pattern productivity suggests a conclusion that the productivity of a pattern largely depends on the quantity of consonants in the coda: the larger the number, the rarer the pattern. Patterns with 3–4 consonants in the coda do not tend to have high productivity; they represent respectively 8% and 1% of all primary nominal words. The dominating patterns are those with 1 consonant (they make up 64%) and 2 consonants (26%) in the coda. All these factors suggest that a complicated coda is not a usual phenomenon in the Lithuanian language and it would be the result of a juncture of a historical root and a consonantal suffix.

The variety of patterns for numerals and pronouns is not rich. They can be: C1 (8 roots, e.g., du ‘two’), C2 (trys ‘three’), V(W)C1 (3 roots, e.g., aš ‘I’), VC3 (antras ‘second’), C1V(W)C1 (13 roots, e.g., kitos ‘other’), V(W)C2 (3 roots, e.g., pirmas ‘first’), C1VC3 (tamsto ‘Sir’), C1V(W)C (2 roots, e.g., keturi ‘four’), C1VC1VC2 (dešimtis ‘ten’), C1VC2VC1 (2 roots, e.g., septyni ‘seven’), C1VCVC2 (tūkstantis ‘thousand’).
The analysis of primary roots is a good starting point to identify structural possibilities of morphemes. However, in real usage not only are particular primary words selected from the available inventory, but, also, derivatives are produced from primary words. Usage frequency of the latter may have influence on the frequency of some root patterns.

In DbML, we found 43 structural root patterns of nominal words. The major part of these patterns is within the periphery of usage; there are 3 main patterns: $C_1V(W)C_1$, $C_1V(W)C_2$, $C_2V(W)C_1$. Not only are they the most productive (the highest number of different roots in DML), but, also, their examples are most frequently used in real language (see Table 1). The dominating pattern in DbML is $C_1V(W)C_1$ nouns and adjectives which make up almost a half of all used examples. Approximately a quarter of all used examples are noun and adjective $C_1V(W)C_2$ and $C_2V(W)C_1$ structure roots. Thus the aforementioned structural patterns comprise even ¾ of all noun and adjective examples in DbML. Four more patterns, $C_1V(W)$, $V(W)C_1$, $C_2V(W)C_2$, $V(W)C_2$ and $C_1V(W)C_1$, constitute almost a tenth of all examples. Noun and adjective roots with other patterns are rather rare in real language.

The numeral and pronoun group is dominated by non-syllabic C_1 roots (they are mainly pronouns, because there is only 0.2% of numerals with C_1 structure) and $C_1V(W)C_1$. These two patterns amount to 85% of all examples with numerals and pronouns in DbML.

Real usage highlighted such root patterns which were impossible to find during the analysis of lemmas (i.e., Sg Nom) and primary nominal words only. First, patterns whose roots end on a vowel (without a coda) should be mentioned; the majority of such nominal words were made from verbs, e.g., $C_1V(W)$ – būklė, būsena ‘a state, condition’ (cf. būti ‘to be’), W – eismas ‘traffic’ (cf. eiti ‘to go’), $C_1V(W)$ – apskritės ‘round’ (cf. apskreiti ‘to orbit’). The other group encompasses scarce nominal words, e.g., VC_1VC_3 – atvirkščias ‘reverse’, $VC_1V(W)C_1VC_1$ – abėcėlė ‘alphabet’, or word forms, e.g., $C_1V(W)$ - sau (Dat ‘oneself’).

Table 1
The distribution of structural root patterns of nominal words in DbML

<table>
<thead>
<tr>
<th>Structural patterns</th>
<th>Usage instances</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nouns</td>
</tr>
<tr>
<td>C_1</td>
<td>0.1</td>
</tr>
<tr>
<td>C_2</td>
<td>0.02</td>
</tr>
<tr>
<td>$C_1V(W)C_1$</td>
<td>49.4</td>
</tr>
<tr>
<td>$C_1V(W)C_2$</td>
<td>18.6</td>
</tr>
<tr>
<td>$C_1V(W)C_1$</td>
<td>12.9</td>
</tr>
<tr>
<td>$C_1V(W)$</td>
<td>3.4</td>
</tr>
<tr>
<td>$V(W)C_1$</td>
<td>3.0</td>
</tr>
<tr>
<td>$C_1V(W)C_2$</td>
<td>2.1</td>
</tr>
<tr>
<td>$V(W)C_2$</td>
<td>1.5</td>
</tr>
<tr>
<td>$C_1V(W)C_1$</td>
<td>1.4</td>
</tr>
<tr>
<td>$C_1V(W)$</td>
<td>0.7</td>
</tr>
<tr>
<td>W</td>
<td>0.6</td>
</tr>
<tr>
<td>C_1VC_2</td>
<td>0.4</td>
</tr>
<tr>
<td>$C_1V(W)C_1$</td>
<td>0.4</td>
</tr>
<tr>
<td>$C_1V(W)C_2$</td>
<td>0.2</td>
</tr>
</tbody>
</table>

δ Symbol * is used to mark the patterns which were not mentioned by Karosienė; they can be identified only during the analysis of connected speech.
The beginning of a root may contain from 1 to 3 consonants. There are three types of binary clusters: ST (e.g., *stor*as ‘fat’), SR (e.g., *slenk*stis ‘threshold’), TR (e.g., *knyg*a ‘a book’), with the latter type being the most common, as even half of consonant clusters of nominal word roots represent this type. The trinomial consonant cluster of a morpheme beginning is rare (only 4% of words in DbML) and it is only the STR pattern (e.g., *skruz*de ‘an ant’).

The variety of consonant clusters in the binary ending of a root and in a medial cluster is richer and embraces even 8 types: TT (e.g., *daikt*as ‘a thing’, *dukter* ‘daughter’ Sg Gen), TS (e.g., *lopš*ys ‘a cradle’, *aksom*as ‘velvet’), TR (e.g., *kakl*as ‘a neck’, *septyn* ‘seven’), ST (e.g., *tašk*as ‘a dot’, *pastar*as ‘latter’), SR (e.g., *dažn*as ‘frequent’, *paslik*as ‘prostrate’), RR (e.g., *deln*as ‘a palm’, *karvel*is ‘a pigeon’), RT (e.g., *smark*us ‘brisk’, *elget*a ‘a beggar’), RS (e.g., *smals*us ‘curious’, *milž*inas ‘a giant’). However, the frequency of cluster types varies. The most common type is RT, amounting to a third of ending and medial clusters.
A trinomial ending of a root can be TST (e.g., šaukšt as ‘a spoon’), TSR (e.g., sluoksnis ‘a layer’), STR (e.g., meistras ‘a master’), RTT (e.g., virptis ‘hop’), RST (e.g., karštas ‘hot’), RSR (e.g., kremzė ‘cartilage’) and RTR (e.g., gandrasis ‘a stork’). A trinomial medial cluster is TST (e.g., tūkstantis ‘thousand’), RST (e.g., erškėtis ‘a thorn’) and RTR (e.g., kerplėša ‘a snag’). The most frequent are TST, TSR and RTR (together they make up 8%) and TST medial clusters (10%).

Quaternary endings of root and medial clusters are rare: RTSR (e.g., alksnis ‘an alder’), RTST (e.g., slenkstis ‘threshold’), RSTR (e.g., irštvā ‘a lie’), medial cluster RTST (the only example is inkštiras ‘a blackhead’, which might be a derivative).

The structure of roots of Lithuanian verbs provided in DML was described by Kruopienė (2000)\(^7\). The results of this analysis are used for the description of the inventory of structural patterns of primary verb roots.

According to the results of Kruopienė’s research, the roots of Lithuanian primary verbs are only monosyllabic. This is their major difference from nominal words, which can be both non-syllabic and polysyllabic. However, like in roots of nominal words, there may be no onset in verbs, while the coda, based on Kuopienė’s analysis, is compulsory\(^8\), and the number of consonants in a root does not exceed 6, either.

In view of research results by Kruopienė, the structural formula for roots of primary verbs is as follows: $C_{0-3} V(W) C_{1-4}$ (Kruopienė, 2000, pp. 60–61, 100). There may be 15 theoretic patterns; however, only $C_3 V(W) C_3$ pattern is not realised The following patterns are the most productive: $C_1 V(W) C_1$, $C_2 V(W) C_1$, $C_1 V(W) C_2$; together they make up 77% of all roots of primary verbs. For this reason, we can infer that the roots of such structure will dominate in real usage.

The structural patterns of primary verb roots:

- V(W)C₁ – 20 (e.g., ošė ‘he soughed’);
- V(W)C₂ – 14 (e.g., irzo ‘he embittered’);
- V(W)C₃ – 5 (e.g., urzgé ‘he growled’);
- V(W)C₄ – 2 (e.g., inkštė ‘he whined’);
- Cᵥ(W)C₁ – 392 (e.g., degė ‘he burned’);
- Cᵥ(W)C₂ – 185 (e.g., valgé ‘he ate’);
- Cᵥ(W)C₃ – 15 (e.g., birzgé ‘he buzzed’);
- Cᵥ(W)C₄ – 4 (e.g., gergždė ‘he wheezed’);
- Cᵥ(W)C₅ – 258 (e.g., klause ‘he listened’);
- Cᵥ(W)C₆ – 120 (e.g., skalbė ‘he washed’);
- Cᵥ(W)C₇ – 26 (e.g., šniokštė ‘he roared’);
- Cᵥ(W)C₈ – 19 (e.g., krenkštė ‘he croaked’);
- Cᵥ(W)C₉ – 18 (e.g., skriejo ‘he scudded’);
- Cᵥ(W)C₁₀ – 7 (e.g., springo ‘he choked’).

The connection between pattern productivity and consonant number is similar to that of primary nominal words: 2% of primary verbs have 1 consonant, 37% have 2 consonants, 41%
have 3 consonants, 14% have 4 consonants, 3% have 5 consonants, and only 2% contain 6 consonants. Thus, patterns with 2 to 3 consonants dominate. Like in the group with nominal words, the patterns whose codas contain 1 consonant (64%) or 2 consonants (30%) are the most productive. There are 4% of trinary codas and only 2% of quaternary codas. Thus, a complex coda is certainly not a typical feature of the Lithuanian language.

All verb roots used in DbML were classified into 23 structural patterns. Based on the data from DbML, in coherent Lithuanian texts monosyllabic verb roots make up 99% and have C0, V(W)C0 structure. The most frequent patterns C1(V(W)C1), C2(V(W)C2), C1(V(W)C2) together amount to 78% of all verb roots in DbML (see Table 2).

General regularities for dictionary and usage data are partially similar. The dominating pattern is C1(V(W)C1). DML has 36% of such roots, while the usage data provide nearly one and a half times more roots. Pattern C1(V(W)C1) in usage is twice as less frequent (11%) than in DML (23%). There are slightly fewer instances of pattern C1(V(W)C2) in usage (17% in DML, almost 12% in DbML). The usage data have also highlighted the structural patterns of roots of derivative verbs. First, we should pay attention to the roots of infinitive and of derivative verbs having non-coda or non-syllabic patterns, e.g., W – eiti ‘to walk’, C1 in a verb sutapatinti ‘to identify’, which derived from a compound adjective tapatus ‘identical’, C2 – a verb dvėjintis ‘to double’, which is made from a numeral. It is obvious that all verbs with disyllabic roots are derivatives: C1(VC,VC1 – vakarėjančia ‘the evening was coming’ Ptcp Masc Sg Gen), C2(VC,VC1 – skeryčiotis ‘to saw the air’, VC,VC1 – ašaroja ‘he cries’, VC,VC1 – apvalinamas ‘being rounded’ Pass Ptcp Masc Sg Nom, C1(VC,VC1 – apsiskarmalavo ‘he ragged himself’.

Consonant clusters in the middle of verb roots are rare (primary verbs, as it has already been mentioned, are monosyllabic and do not have medial clusters). Medial clusters in DbML occur only in a few derivatives: pasninkauti ‘to fast’, priežiūrėti ‘to beg’, apsiskarėmalavo ‘ragged’, apvalinamas ‘being rounded’.

Like in nominal words, verb roots match the structural patterns of a syllable: trinomial STR and binomial ST, SR, TR (e.g., springo ‘he choked’, skalbė ‘he washed’, šniokštė ‘he roared’, krenkštė ‘he croaked’), with the latter cluster dominating (47% in DbML).

Endings of primary verbs are not as varied as in nominal words. Verbs tend to have only four binomial types of endings ST, RS, RT, RR, trinomial types TST, RST and quaternary RTST (e.g., respectively vystė ‘he developed, delsė ‘he procrastinated’, valgė ‘he ate’, varvė ‘it drops’, šniokštė ‘he roared’, urzgė ‘he growled’, gergždė ‘he wheezed’). In real usage endings of verb

9 Symbol * is used to mark the patterns which were not mentioned by Kruopienė; they can be identified only during the analysis of connected speech.
roots are more diverse: without the aforementioned types, there were instances of SR (e.g.,
\textit{podažnějo} ‘it became frequent’), TR (e.g., \textit{liekina} ‘it slims’), TS (e.g., \textit{pražiopsojo} ‘he missed
something’), TT (e.g., \textit{žiopčiodamas} ‘gasping’), STR (e.g., \textit{potaštrėjus} ‘having exacerbated’),
TSR (e.g., \textit{potikslinti} ‘to specify’), RTT (e.g., \textit{bendrautį} ‘to communicate’), RTS (e.g., \textit{purkšti} ‘to sprinkle’), RTR (e.g., \textit{palengvinti} ‘to alleviate’), RTSR (e.g., \textit{apšerkšniję} ‘frosted’). All these
types are derivatives except the verb \textit{purkšti}. The dominating type of codas is RT (71% of
real usage verbs); ST is also frequent (8% of real usage verbs).

The productivity and frequency analysis of morpheme structural patterns of roots of inflective
parts of speech allows drawing the following conclusions.

1. 1,767 roots of primary nominal words can be divided into 46 structural patterns, and 1,085
roots of primary verbs into 14 patterns. This means that the relative structural diversity
of nominal roots is higher than in verbs. This conclusion is confirmed by the relation be-
 tween the numbers of different roots and patterns, that is 38 for nominal words and 78
for verbs\footnote{This type did not occur among primary verbs only because the structure of
infinite roots was not analysed. In the Lithuanian language, metathesis of \textit{sk}, \textit{zg}, \textit{šk}, \textit{žg} occurs before consonants, e.g. \textit{dreskia} ‘he scratches’ - \textit{drekski} ‘to
scratch’, \textit{mezga} ‘he knits’ - \textit{megzti} ‘to knit’}.
2. Roots of primary nominal words are nonsyllabic C_{1-2}, monosyllabic $C_{0-3}V(W)C_{1-4}$, disyllabic
$C_{0-3}V(W)C_{1-4}V(W)C_{1-4}$, trisyllabic $C_{0-1}V(C_{1-2}V(W)C_{1-2}$, while roots of primary verbs are only
monosyllabic: $C_{0-3}V(W)C_{1-4}$.
3. The total amount of root consonants does not exceed six. The most productive root pa-
tterns are $C_{1-2}V(W)C_{1-2}$ for nominal words and verbs (respectively 55% and 77%). The us-
age is dominated by root structures $C_{1-2}V(W)C_{1-2}$ for nouns, adjectives and verbs (77%) and
nominal and pronoun roots C_{1} and $C_{1}V(W)C_{1}$ (87%).
4. Binomial and trinomial clusters of all morpheme beginnings correspond to the patterns
for syllable beginnings: STR, RT, SR, ST. Morphemes in medial clusters and codas may
have all clusters of two consonants, except the cluster of two fricatives, which is impo-
sible due to phonological processes inherent to the Lithuanian language. Trinomial con-
sonant clusters in codas and medial clusters are very diverse (STR, TST, TSR, RTT, RST,
RSR, RTR, RTS, RTST, RSTR); however, consonant R never occurs in the middle of a cluster.

In conclusion, it should be said that the structural variety of morphemes is rich. However, the
real usage is predominated by root patterns having a simple structure.

\section*{Conclusions}

\section*{References}

vowel alternations in word formation]. Vilnius: Vilniaus pedagoginis universitetas.
šaknies tipai. [Alternations of root vowels: morphoneme patterns and structural root
types]. In: Žmogus ir žodis, 3(1), pp. 3–9.
3. DML – Dabartinės lietuvių kalbos žodynas [The Dictionary of Modern Lithuanian – DML],
Mokslo ir enciklopedijų leidykla).
Lithuanian Phonology. Vilnius: Eugrimas.
lietuvių kalbos statistinė struktūra:

\footnote{Here the relation is calculated in the following way: the number of different morpheme examples is divided by the number of patterns, i.e., $1,767/46 = 38$. This means that one pattern covers 38 different roots of nominal words.}
Asta Kazlauskienė, Jurgita Cvilikaitė. Lietuvių kalbos kaitomųjų žodžių šaknies struktūra

Santrauka
morfemų viduje (jos fiksuotos trečdalyje šaknų), 4) priebslių kiekis šaknyje paprastai neviršija šešių, 5) priebslių samplaikos inicialėje sutampa su skiemens pradžios modeliu, priebslių samplaikos finalėje ir medialėje daug įvairesnės.

About the Authors

Asta Kazlauskienė
Prof. Dr., Professor at the Department of Lithuanian Studies at Vytautas Magnus University
Research interests
research of Lithuanian speech: the acoustic characteristics of sounds, phonotactics, accentuation and rhythmics, applied linguistics
Address
V. Putvinskio g. 23-204, LT-44243 Kaunas, Lithuania
E-mail
asta.kazlauskiene@vdu.lt

Jurgita Cvilikaitė
Lecturer at the Institute of Foreign Languages at Vytautas Magnus University
Research interests
applied linguistics, foreign language teaching methodology, implementation of ICT in language teaching; corpus linguistics
Address
K. Donelaičio g. 52-603, LT-44243 Kaunas, Lithuania
E-mail
jurgita.cvilikaite@vdu.lt